miércoles, 17 de septiembre de 2014

TOPOLOGIAS DE REDES

TOPOLOGIAS DE REDES


TOPOLOGÍA DE BUS
Una Red o topologia en forma de Bus o Canal de difusión es un camino de comunicación bidireccional con puntos de terminación bien definidos. Cuando una estación trasmite, la señal se propaga a ambos lados del emisor hacia todas las estaciones conectadas al Bus hasta llegar a las terminaciones del mismo. Así, cuando una estación trasmite su mensaje alcanza a todas las estaciones, por esto el Bus recibe el nombre de canal de difusión. Otra propiedad interesante es que el Bus actúa como medio pasivo y por lo tanto, en caso de extender la longitud de la red, el mensaje no debe ser regenerado por repetidores (los cuales deben ser muy fiables para mantener el funcionamiento de la red). En este tipo de topología cualquier ruptura en el cable impide la operación normal y es muy difícil de detectar. Por el contrario, el fallo de cualquier nodo no impide que la red siga funcionando normalmente, lo que permite añadir o quitar nodos a la red sin interrumpir su funcionamiento.

Ventajas

  • Facilidad de implementación y crecimiento. 
  • Faciles de instalar 
  • Requiere menor cantidad de fisico
  • Simplicidad en la arquitectura

Desventajas

  • Hay un límite de equipos dependiendo de la calidad de la señal.
  • Puede producirse degradación de la señal.
  • Complejidad de reconfiguración y aislamiento de fallos.
  • Limitación de las longitudes físicas del canal.
  • Un problema en el canal usualmente degrada toda la red.
  • El desempeño se disminuye a medida que la red crece.
  • El canal requiere ser correctamente cerrado (caminos cerrados).
  • Altas pérdidas en la transmisión debido a colisiones entre mensajes.
  • Es una red que ocupa mucho espacio.



TOPOLOGÍA DE ANILLO

Esta topología conecta a las computadoras con un solo cable en forma de circulo. Con diferencia de la topología bus, las puntas no están conectadas con un terminados. Todas las señales pasan en una dirección y pasan por todas las computadoras de la red. Las computadoras en esta topología funcionan como repeaters, porque lo que hacen es mejorar la señal. Retransmitiéndola a la próxima computadora evitando que llegue débil dicha señal. La falla de una computadora puede tener un impacto profundo sobre el funcionamiento de la red. 
         La principal ventaja de la red de anillo es que se trata de una arquitectura muy sólida, que pocas veces entra en conflictos con usuarios.
Doble anillo (Token ring): Un método de transmisión de datos alrededor del anillo se denomina token passing. Esta técnica consiste en que la computadora emisora transmita un dato que la computadora receptora la reciba y que esta mande una señal de respuesta informando que recibió el dato correctamente. Todo esto se hace a la velocidad de la luz. Las redes Token Ring no tienen colisiones. Si el anillo acepta el envío anticipado del token, se puede emitir un nuevo token cuando se haya completado la transmisión de la trama. Las redes Token Ring usan un sistema de prioridad sofisticado que permite que determinadas estaciones de alta prioridad designadas por el usuario usen la red con mayor frecuencia. Las tramas Token Ring tienen dos campos que controlan la prioridad: el campo de prioridad y el campo de reserva.


Ventajas de topología en anillo:
  • La principal ventaja de la red de anillo es que se trata de una arquitectura muy sólida, que pocas veces entra en conflictos con usuarios.
  • La mayor ventaja que posee es el costo, pues para crearla, basta con que los equipos cuenten con tarjetas de red y con que exista un cable coaxial que una un punto con otro.
  • Si se poseen pocas estaciones puede obtenerse un rendimiento óptimo.
  • El sistema provee un acceso equitativo para todas las computadoras.
  • Esta topología usa menos cable que la topología de estrella.
  • Se puede operar a grandes velocidades, y los mecanismos para evitar colisiones son sencillos.
Desventajas de topología en anillo:
  • La ruptura de algún cable o fallo de un nodo altera el funcionamiento de toda la red, al igual que las distorsiones afectan a toda la red.
  • La topología en anillo utiliza más cable que la topología en bus pero menos que la topología en estrella.
  • En algunos tipos de topología en anillo es necesario bajar todo el sistema para agregar nodos.
  • Si se posee gran cantidad de estaciones el rendimiento decaerá.
  • En algunos casos para conectar una máquina al sistema es necesario desconectarlo de varias máquinas.
  • Posee una mayor lentitud en la transmisión de la señal, debido a que la información es repartida por todo el anillo.


TOPOLOGÍA DE ESTRELLA
En la topología de estrella, los equipos de la red están conectados a un hardware denominado concentrador. Es una caja que contiene un cierto número de sockets a los cuales se pueden conectar los cables de los equipos. Su función es garantizar la comunicación entre esos sockets.
A diferencia de las redes construidas con la topología de bus, las redes que usan la topología de estrella son mucho menos vulnerables, ya que se puede eliminar una de las conexiones fácilmente desconectándola del concentrador sin paralizar el resto de la red. El punto crítico en esta red es el concentrador, ya que la ausencia del mismo imposibilita la comunicación entre los equipos de la red.Sin embargo, una red con topología de estrella es más cara que una red con topología de bus, dado que se necesita hardware adicional (el concentrador).

Ventajas de la Topología Estrella:
  • A comparación de las topologías Bus yAnillo, si una computadora se daña el cable se rompe, las otras computadoras conectadas a la red siguen funcionando.
  • Agregar una computadora a la red es muy fácil ya que lo único que hay que hacer es conectarla al HUB o SWITCH.
  • Tiene una mejor organización ya que al HUB o SWITCH se lo puede colocar en el centro de un lugar físico y a ese dispositivo conectar todas las computadoras deseadas.
Desventajas de la Topología Estrella:

  • No es tan económica a comparación de la topología Bus o Anillo porque es necesario más cable para realizar el conexionado.
  • Si el HUB o SWITCH deja de funcionar, ninguna de las computadoras tendrá conexión a la red.
  • El número de computadoras conectadas a la red depende de las limitaciones del HUB o SWITCH



TOPOLOGÍA DE ÁRBOL
La Topología de árbol es aquella topología de red en la que los nodos están colocados en forma de árbol. La conexión en árbol es parecida a una serie de redes en estrella interconectadas a diferencia de que no tienen nodo central. Tiene un nodo de enlace troncal, generalmente ocupado por un hub o switch, desde el que se ramifican los demás nodos.
La falla de un nodo no implica interrupción en las comunicaciones. Se comparte el mismo canal de comunicaciones. La topología de árbol combina características de la topología de estrella con la BUS. Consiste en un conjunto de subredes estrella conectadas a un BUS. Esta topología facilita el crecimiento de la red.
Los problemas asociados a las topologías anteriores radican en que los datos son recibidos por todas las estaciones sin importar para quien vayan dirigidos lo que puede producir interferencia entre las señales cuando dos o más estaciones transmiten al mismo tiempo. Por lo que hay que establecer un identificador de estación destino y mantener la cooperación entre todas las estaciones.



TOPOLOGÍA DE TELARAÑA
Las topologías de telaraña están inmediatamente con el concepto de rutas. A diferencia de todas las topologías anteriores, los mensajes enviados en una red de telaraña pueden tomar cualquiera de las muchas rutas posibles para llegar a su destino.
Algunos WANs (Redes de Cobertura Amplia), como la internet emplean las rutas de telaraña. En cada parte de la telaraña existe un equipo de cómputo el cual recibe y envía información.
La ventaja de esta topología es la fiabilidad frente a fallas, si una computadora falla no afecta a las demás, tiene grandes posibilidades de reconfiguración y permite tráficos elevados de información con retardos pequeños.

TIPOS DE COMUNICACION DE REDES ALAMBRICAS E INALAMBRICAS

TIPOS DE COMUNICACION DE REDES ALAMBRICAS E INALAMBRICAS


TIPO DE CABLES UTILIZADOS EN REDES ALAMBRICAS:

CABLE COAXIAL


Estos cables se caracterizan por ser fáciles de manejar, flexibles, ligeros y económicos. Están compuestos por hilos de cobre, que constituyen en núcleo y están cubiertos por un aislante, un trenzado de cobre o metal y una cubierta externa, hecha de plástico, teflón o goma.

Los cables coaxiales son ideales para transmitir voz, datos y videos, son económicos, fáciles de usar y seguros.


CABLES DE PAR TRENZADO


Estos cables están compuestos por dos hilos de cobre entrelazados y aislados y se los puede dividir en dos grupos: apantallados (STP) y sin apantallar (UTP). Estas últimas son las más utilizadas en para el cableado LAN y también se usan para sistemas telefónicos. Los segmentos de los UTP tienen una longitud que no supera los 100 metros y está compuesto por dos hilos de cobre que permanecen aislados. Los cables STP cuentan con una cobertura de cobre trenzado de mayor calidad y protección que la de los UTP. Además, cada par de hilos es protegido con láminas, lo que permite transmitir un mayor número de datos y de forma más protegida. Se utilizan los cables de par trenzado para LAN que cuente con presupuestos limitados y también para conexiones simples.




CABLES DE FIBRA OPTICA



Estos transportan, por medio de pulsos modulados de luz, señales digitales. Al transportar impulsos no eléctricos, envían datos de forma segura ya que, como no pueden ser pinchados, los datos no pueden ser robados. Gracias a su pureza y la no atenuación de los datos, estos cables transmiten datos con gran capacidad y en poco tiempo.
La fibra óptica cuenta con un delgado cilindro de vidrio, llamado núcleo, cubierto por un revestimiento de vidrio y sobre este se encuentra un forro de goma o plástico. Como los hilos de vidrio sólo pueden transmitir señales en una dirección, cada uno de los cables tiene dos de ellos con diferente envoltura. Mientras que uno de los hilos recibe las señales, el otro las transmite. La fibra óptica resulta ideal para la transmisión de datos a distancias importantes y lo hace en poco tiempo.




CABLE MULTIPAR




Un cable multipar es aquel formado por grupos de 2 hilos de material conductor,de grosores entre 0,3 mm y 3 mm, recubiertos de plástico protector.
En su composición se da un elevado número de pares de cobre, generalmente múltiplo de 25.
Principalmente son utilizados para la conexión física de equipos de telefonía, en redes de datos, como las LAN, que es la interconexión entre varios ordenadores y periféricos. Entre las clases de cables multipares se dan los TELCON, utilizados en instalaciones aéreas, y que presentan cómo algunas de las principales características su núcleo relleno, que son conductores de cobre desnudo reconocido y que poseen una excelente perfomance eléctrica y mecánica.



TÉCNICA DE COMUNICACIÓN EN REDES INALAMBRICAS



Actualmente, las tecnologías de LAN inalámbricas comprenden de infrarrojo (IR), radio de UHF, spread spectrum y radio microondas, que van desde frecuencias en Ghz en la región de Europa (900 Mhz en los EE.UU.) a frecuencias infrarrojas. La red de comunicación personal (PCN) puede usar una banda CDMA (code-division multiple access) compartida, y el servicio celular digital una banda TDMA (time-division multiple access). Hay una controversia considerable entre los expertos en el campo, con respecto a los méritos relativos al spread spectrum (CDMA) y la banda-angosta (TDMA) para la red de comunicación privada (PCN). La técnica preferida realmente puede variar con el escenario PCN especifico hacia quien va dirigido.
  • Spread spectrum (CDMA): Este término define una clase de sistemas de radios digitales en los que el ancho de banda ocupado es considerablemente mayor que la proporción de información. La técnica se propuso inicialmente para uso del ejército, donde las dificultades de descubrir o bloquear semejante signo le hicieron una opción atractiva para comunicación. El término CDMA se usa a menudo en referencia a sistemas que tienen la posibilidad de transmitir varias señales en la misma porción de espectro usando códigos pseudo-aleatorios para cada uno. Esto puede ser logrado por una serie de pulsos de frecuencias diferentes, en un modelo predeterminado o a la sucesión directa de una onda binaria pseudo-aleatoria cuya tasa de símbolos es un múltiplo mayor a la tasa de bit de la trama original.
  • Time Division Multiple Access (TDMA): El principio de TDMA es básicamente simple. Tradicionalmente, los canales de voz han sido creados dividiendo el espectro de la radio en portadores de frecuencia RF (canales), con una conversación que ocupa un canal (dúplex). Esta técnica es conocida como FDMA (frecuency division multiple access). TDMA divide a los portadores de la radio en una sucesión repetida de pequeñas ranuras de tiempo (canales). Cada conversación ocupa justo una de estas ranuras de tiempo. Así en lugar de sólo una conversación, cada portador de la radio lleva varias conversaciones a la vez.

Tipos de redes de acuerdo a su cobertura geográfica


LAN(red de área local)
LAN significa Red de área local. Es un grupo de equipos que pertenecen a la misma organización y están conectados dentro de un área geográfica pequeña a través de una red, generalmente con la misma tecnología (la más utilizada es Ethernet).


CAN(red de área Campus)
Una CAN es una colección de LANs dispersadas geográficamente dentro de un campus (universitario, oficinas de gobierno, maquilas o industrias) pertenecientes a una misma entidad en una área delimitada en kilometros.
Una CAN utiliza comúnmente tecnologías tales como FDDI y Gigabit Ethernet para conectividad a través de medios de comunicación tales como fibra óptica y espectro disperso.


MAN(red de área metropolitana)
Una MAN (Red de área metropolitana) conecta diversas LAN cercanas geográficamente (en un área de alrededor de cincuenta kilómetros) entre sí a alta velocidad. Por lo tanto, una MAN permite que dos nodos remotos se comuniquen como si fueran parte de la misma red de área local.
Una MAN está compuesta por conmutadores o routers conectados entre sí con conexiones de alta velocidad (generalmente cables de fibra óptica).



WAN(red de área extensa)
Una WAN (Red de área extensa) conecta entre sí varias LAN atravesando importantes distancias geográficas, del orden del tamaño de un país o de un continente.
La velocidad disponible en una WAN varía según el costo de las conexiones (que aumenta con la distancia) y puede ser baja.
Las WAN funcionan con routers, que pueden "elegir" la ruta más apropiada que tomarán los datos para llegar a un nodo de la red..


WLAN(red de área local inalámbrica)
WLAN (en inglés; Wireless Local Área Network) es un sistema de comunicación de datos inalámbrico flexible, muy utilizado como alternativa a las redes LAN cableadas o como extensión de éstas. Utiliza tecnología de radiofrecuencia que permite mayor movilidad a los usuarios al minimizar las conexiones cableadas. Las WLAN van adquiriendo importancia en muchos campos, como almacenes o para manufactura, en los que se transmite la información en tiempo real a una terminal central. También son muy populares en los hogares para compartir el acceso a Internet entre varias 

WPAN(red inalámbrica personal)
Una red inalámbrica de área personal (WPAN) incluye redes inalámbricas de corto alcance que abarcan un área de algunas decenas de metros. Este tipo de red se usa generalmente para conectar dispositivos periféricos (por ejemplo,impresoras, teléfonos móviles y electrodomésticos) o un asistente personal digital (PDA) a un ordenador sin conexión por cables. También se pueden conectar de forma inalámbrica dos ordenadores cercanos.

PAN(red de área personal)
Una red de área personal(PAN) es una red de computadoras para la comunicación entre distintos dispositivos (tanto computadoras, puntos de acceso a internet, teléfonos celulares, PDA, dispositivos de audio, impresoras) cercanos al punto de acceso. Estas redes normalmente son de unos pocos metros y para uso personal.

Metodos de Transmision de Datos

Según la manera de la transmisión

banda base
En Telecomunicaciones, el término banda base se refiere a la banda de frecuencias producida por un transductor, tal como un micrófono, un manipulador telegráfico u otro dispositivo generador de señales que no es necesario adaptarlo al medio por el que se va a trasmitir.
Banda base es la señal de una sola transmisión en un canal, banda ancha significa que lleva más de una señal y cada una de ellas se transmite en diferentes canales, hasta su número máximo de canal.
En los sistemas de transmisión, la banda base es generalmente utilizada para modular una portadora. Durante el proceso de demodulación se reconstruye la señal banda base original. Por ello, podemos decir que la banda base describe el estado de la señal antes de la modulación y de la multiplexación y después de la demultiplexación y demodulación.
Las frecuencias de banda base se caracterizan por ser generalmente mucho más bajas que las resultantes cuando éstas se utilizan para modular una portadora o subportadora. 

banda ancha
En telecomunicaciones, se conoce como banda ancha a la red (de cualquier tipo) que tiene una elevada capacidad para transportar información que incide en la velocidad de transmisión de ésta. Así entonces, es la transmisión de datos simétricos por la cual se envían simultáneamente varias piezas de informacion, con el objeto de incrementar la velocidad de transmisión efectiva. En ingeniería de redes este término se utiliza también para los métodos en donde dos o más señales comparten un medio de transmisión. Así se utilizan dos o más canales de datos simultáneos en una única conexión, lo que se denomina multiplexación (véase sección más abajo).

Segun la informacion

asincrona
La transmisión asíncro da lugar cuando el proceso de sincronización entre emisor y receptor se realiza en cada palabra de código transmitido. Esta sincronización se lleva a cabo a través de unos bits especiales que definen el entorno de cada código.
También se dice que se establece una relación asíncrona cuando no hay ninguna relación temporal entre la estación que transmite y la que recibe. Es decir, el ritmo de presentación de la información al destino no tiene por qué coincidir con el ritmo de presentación de la información por la fuente. En estas situaciones tampoco se necesita garantizar un ancho de banda determinado, suministrando solamente el que esté en ese momento disponible. Es un tipo de relación típica para la transmisión de datos.
En este tipo de red el receptor no sabe con precisión cuando recibirá un mensaje. Cada carácter a ser transmitido es delimitado por un bit de información denominado de cabecera o de arranque, y uno o dos bits denominados de terminación o de parada.
  • El bit de arranque tiene dos funciones de sincronización de reloj del transmisor y del receptor.
  • El bit o bits de parada, se usan para separar un caracter del siguiente.

sincrona
La transmisión síncrona es una técnica que consiste en el envío de una trama de datos (conjunto de caracteres) que configura un bloque de información comenzando con un conjunto de bits de sincronismo (SYN) y terminando con otro conjunto de bits de final de bloque (ETB). En este caso, los bits de sincronismo tienen la función de sincronizar los relojes existentes tanto en el emisor como en el receptor, de tal forma que estos controlan la duración de cada bit y carácter.
Dicha transmisión se realiza con un ritmo que se genera centralizadamente en la red y es el mismo para el emisor como para el receptor. La información se transmite entre dos grupos, denominados delimitadores (8 bits).


Segun el medio de transmision

serie
En una conexión en serie, los datos se transmiten de a un bit por vez a través del canal de transmisión. Sin embargo, ya que muchos procesadores procesan los datos en paralelo, el transmisor necesita transformar los datos paralelos entrantes en datos seriales y el receptor necesita hacer lo contrario

paralela
Las conexiones paralelas consisten en transmisiones simultáneas de N cantidad de bits. Estos bits se envían simultáneamente a través de diferentes canales N(un canal puede ser, por ejemplo, un alambre, un cable o cualquier otro medio físico). La conexión paralela en equipos del tipo PC generalmente requiere 10 alambres.


Segun las señales transmitidas

Analogica
Transmisión Analógica: Estas señales se caracterizan por el continuo cambio de amplitud de la señal. En la ingeniería de control de procesos la señal oscila entre 4 a 20 mA, y es transmitida en forma puramente analógica. En una señal analógica el contenido de información es muy restringida; tan solo el valor de la corriente y la presencia o no de esta puede ser determinada

Digital
Transmisión Digital: Estas señales no cambian continuamente, si no que es transmitida en paquetes discretos. No es tampoco inmediatamente interpretada, si no que debe ser primero decodificada por el receptor. El método de transmisión también es otro: como pulsos eléctricos que varían entre dos niveles distintos de voltaje. En lo que respecta a la ingeniería de procesos, no existe limitación en cuanto al contenido de la señal y cualquierinformación adicional.